Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(10): 101210, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852181

RESUMO

Nearly one-half of patients with cystic fibrosis (CF) carry the homozygous F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene but exhibit variable lung function phenotypes. How adaptive immunity influences their lung function remains unclear, particularly the serological antibody responses to antigens from mucoid Pseudomonas in sera from patients with CF with varying lung function. Sera from patients with CF with reduced lung function show higher anti-outer membrane protein I (OprI) immunoglobulin G1 (IgG1) titers and greater antibody-mediated complement deposition. Induction of anti-OprI antibody isotypes with complement activity enhances lung inflammation in preclinical mouse models. This enhanced inflammation is absent in immunized Rag2-/- mice and is transferrable to unimmunized mice through sera. In a CF cohort undergoing treatment with elexacaftor-tezacaftor-ivacaftor, the declination in anti-OprI IgG1 titers is associated with lung function improvement and reduced hospitalizations. These findings suggest that antibody responses to specific Pseudomonas aeruginosa (PA) antigens worsen lung function in patients with CF.


Assuntos
Fibrose Cística , Humanos , Animais , Camundongos , Fibrose Cística/genética , Pseudomonas , Pseudomonas aeruginosa , Pulmão , Imunoglobulina G
2.
Sci Rep ; 13(1): 13862, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620507

RESUMO

Quantitative assessment of emphysema in CT scans has mostly focused on calculating the percentage of lung tissue that is deemed abnormal based on a density thresholding strategy. However, this overall measure of disease burden discards virtually all the spatial information encoded in the scan that is implicitly utilized in a visual assessment. This simplification is likely grouping heterogenous disease patterns and is potentially obscuring clinical phenotypes and variable disease outcomes. To overcome this, several methods that attempt to quantify heterogeneity in emphysema distribution have been proposed. Here, we compare three of those: one based on estimating a power law for the size distribution of contiguous emphysema clusters, a second that looks at the number of emphysema-to-emphysema voxel adjacencies, and a third that applies a parametric spatial point process model to the emphysema voxel locations. This was done using data from 587 individuals from Phase 1 of COPDGene that had an inspiratory CT scan and plasma protein abundance measurements. The associations between these imaging metrics and visual assessment with clinical measures (FEV[Formula: see text], FEV[Formula: see text]-FVC ratio, etc.) and plasma protein biomarker levels were evaluated using a variety of regression models. Our results showed that a selection of spatial measures had the ability to discern heterogeneous patterns among CTs that had similar emphysema burdens. The most informative quantitative measure, average cluster size from the point process model, showed much stronger associations with nearly every clinical outcome examined than existing CT-derived emphysema metrics and visual assessment. Moreover, approximately 75% more plasma biomarkers were found to be associated with an emphysema heterogeneity phenotype when accounting for spatial clustering measures than when they were excluded.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema/diagnóstico por imagem , Benchmarking , Pulmão/diagnóstico por imagem , Análise por Conglomerados
3.
BMC Bioinformatics ; 23(1): 489, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384492

RESUMO

BACKGROUND: Studies that utilize RNA Sequencing (RNA-Seq) in conjunction with designs that introduce dependence between observations (e.g. longitudinal sampling) require specialized analysis tools to accommodate this additional complexity. This R package contains a set of utilities to fit linear mixed effects models to transformed RNA-Seq counts that properly account for this dependence when performing statistical analyses. RESULTS: In a simulation study comparing lmerSeq and two existing methodologies that also work with transformed RNA-Seq counts, we found that lmerSeq was comprehensively better in terms of nominal error rate control and statistical power. CONCLUSIONS: Existing R packages for analyzing transformed RNA-Seq data with linear mixed models are limited in the variance structures they allow and/or the transformation methods they support. The lmerSeq package offers more flexibility in both of these areas and gave substantially better results in our simulations.


Assuntos
RNA , Software , RNA-Seq , Análise de Sequência de RNA/métodos , Modelos Lineares
4.
BMC Med Res Methodol ; 22(1): 153, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643435

RESUMO

BACKGROUND: As the cost of RNA-sequencing decreases, complex study designs, including paired, longitudinal, and other correlated designs, become increasingly feasible. These studies often include multiple hypotheses and thus multiple degree of freedom tests, or tests that evaluate multiple hypotheses jointly, are often useful for filtering the gene list to a set of interesting features for further exploration while controlling the false discovery rate. Though there are several methods which have been proposed for analyzing correlated RNA-sequencing data, there has been little research evaluating and comparing the performance of multiple degree of freedom tests across methods. METHODS: We evaluated 11 different methods for modelling correlated RNA-sequencing data by performing a simulation study to compare the false discovery rate, power, and model convergence rate across several hypothesis tests and sample size scenarios. We also applied each method to a real longitudinal RNA-sequencing dataset. RESULTS: Linear mixed modelling using transformed data had the best false discovery rate control while maintaining relatively high power. However, this method had high model non-convergence, particularly at small sample sizes. No method had high power at the lowest sample size. We found a mix of conservative and anti-conservative behavior across the other methods, which was influenced by the sample size and the hypothesis being evaluated. The patterns observed in the simulation study were largely replicated in the analysis of a longitudinal study including data from intensive care unit patients experiencing cardiogenic or septic shock. CONCLUSIONS: Multiple degree of freedom testing is a valuable tool in longitudinal and other correlated RNA-sequencing experiments. Of the methods that we investigated, linear mixed modelling had the best overall combination of power and false discovery rate control. Other methods may also be appropriate in some scenarios.


Assuntos
RNA , Projetos de Pesquisa , Humanos , Estudos Longitudinais , RNA/genética , Tamanho da Amostra , Análise de Sequência de RNA/métodos
5.
Spat Stat ; 412021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33409121

RESUMO

Understanding spatial inhomogeneity and clustering in point patterns arises in many contexts, ranging from disease outbreak monitoring to analyzing radiologically-based emphysema in biomedical images. This can often involve classifying individual points as being part of a feature/cluster or as being part of a background noise process. Existing methods for this task can struggle when there are differences in the size and/or density of individual clusters. In this work, we propose employing kernel density estimates of the underlying point process intensity function, using an existing data-driven approach to bandwidth selection, to separate feature points from noise. This is achieved by constructing a null distribution, either through asymptotic properties or Monte Carlo simulation, and comparing kernel density estimates to a given quantile of this distribution. We demonstrate that our method, termed Kernel Density and Simulation based Filtering (KDS-Filt), showed superior performance to existing alternative approaches, especially when there is inhomogeneity in cluster sizes and density. We also show the utility of KDS-Filt for identifying clinically relevant information about the spatial distribution of emphysema in lung computed tomography scans. The KDS-Filt methodology is available as part of the sncp R package, which can be downloaded at https://github.com/stop-pre16/sncp.

6.
BMC Bioinformatics ; 21(1): 375, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859148

RESUMO

BACKGROUND: As the barriers to incorporating RNA sequencing (RNA-Seq) into biomedical studies continue to decrease, the complexity and size of RNA-Seq experiments are rapidly growing. Paired, longitudinal, and other correlated designs are becoming commonplace, and these studies offer immense potential for understanding how transcriptional changes within an individual over time differ depending on treatment or environmental conditions. While several methods have been proposed for dealing with repeated measures within RNA-Seq analyses, they are either restricted to handling only paired measurements, can only test for differences between two groups, and/or have issues with maintaining nominal false positive and false discovery rates. In this work, we propose a Bayesian hierarchical negative binomial generalized linear mixed model framework that can flexibly model RNA-Seq counts from studies with arbitrarily many repeated observations, can include covariates, and also maintains nominal false positive and false discovery rates in its posterior inference. RESULTS: In simulation studies, we showed that our proposed method (MCMSeq) best combines high statistical power (i.e. sensitivity or recall) with maintenance of nominal false positive and false discovery rates compared the other available strategies, especially at the smaller sample sizes investigated. This behavior was then replicated in an application to real RNA-Seq data where MCMSeq was able to find previously reported genes associated with tuberculosis infection in a cohort with longitudinal measurements. CONCLUSIONS: Failing to account for repeated measurements when analyzing RNA-Seq experiments can result in significantly inflated false positive and false discovery rates. Of the methods we investigated, whether they model RNA-Seq counts directly or worked on transformed values, the Bayesian hierarchical model implemented in the mcmseq R package (available at https://github.com/stop-pre16/mcmseq ) best combined sensitivity and nominal error rate control.


Assuntos
RNA/química , Análise de Sequência de RNA/métodos , Interface Usuário-Computador , Teorema de Bayes , Humanos , Método de Monte Carlo , RNA/genética , RNA/metabolismo , Tuberculose/genética , Tuberculose/patologia
7.
Spat Stat ; 29: 243-267, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31750077

RESUMO

Pulmonary emphysema is a destructive disease of the lungs that is currently diagnosed via visual assessment of lung Computed Tomography (CT) scans by a radiologist. Visual assessment can have poor inter-rater reliability, is time consuming, and requires access to trained assessors. Quantitative methods that reliably summarize the biologically relevant characteristics of an image are needed to improve the way lung diseases are characterized. The goal of this work was to show how spatial point process models can be used to create a set of radiologically derived quantitative lung biomarkers of emphysema. We formalized a general framework for applying spatial point processes to lung CT scans, and developed a Shot Noise Cox Process to quantify how radiologically based emphysematous tissue clusters into larger structures. Bayesian estimation of model parameters was done using spatial Birth-Death MCMC (BD-MCMC). In simulations, we showed the BD-MCMC estimation algorithm is able to accurately recover model parameters. In an application to real lung CT scans from the COPDGene cohort, we showed variability in the clustering characteristics of emphysematous tissue across disease subtypes that were based on visual assessments of the CT scans.

8.
Appetite ; 65: 96-102, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23402714

RESUMO

While the majority of Americans are now overweight, some individuals maintain their weight with minimal effort. This study investigated behavioral differences between 58 individuals recruited as either obese-resistant (OR) or obese-prone (OP) based on self-identification, BMI, and personal/family weight history. Subjects were studied during Eucaloric (EU), Overfed (OF), and Underfed (UF) phases which included a run-in diet, 1 day intervention diet, and a study day. At baseline, subjects completed the Three Factor Eating Questionnaire (TFEQ) and Power of Food Scale (PFS). On the study day, ratings of appetite, food appeal and desire, and food cravings were performed in response to a breakfast shake. OF resulted in reduced hunger and food desire while UF resulted in increased hunger and food appeal and desire. While hunger did not differ between groups, OP had higher scores for TFEQ measures (hunger, restraint and disinhibition), higher "hedonic hunger" as measured by the PFS, and greater food cravings and ratings of food appeal and desire. These results suggest that subjective hunger and desire for food change significantly after only one day of over- or underfeeding. Additionally, we found several behavioral differences between groups that are likely to promote weight gain over time in the OP.


Assuntos
Apetite/fisiologia , Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Fome , Inibição Psicológica , Obesidade/etiologia , Adulto , Índice de Massa Corporal , Desjejum , Feminino , Humanos , Hiperfagia , Masculino , Obesidade/fisiopatologia , Prazer , Controles Informais da Sociedade , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA